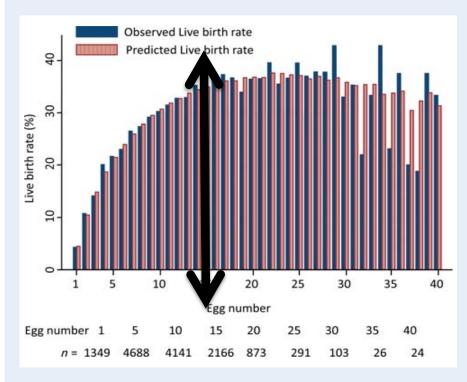


Nouveautés dans la stimulation d'ovulation et regain d'intérêt pour la phase lutéale



Anne Guivarc'h-Levêque Clinique Mutualiste la sagesse Rennes

Evolution des pratiques

Nombre d'ovocytes optimum

Figure 4 Observed versus predicted live birth rate in data from 2006 to 2007.

Optimum 15 ovocytes

A moduler Selon l'Age

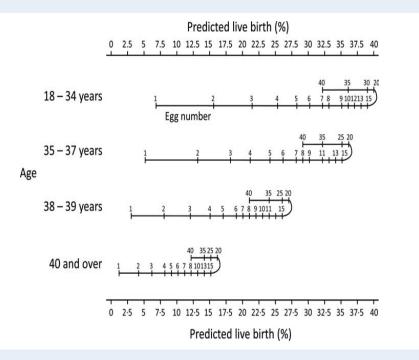
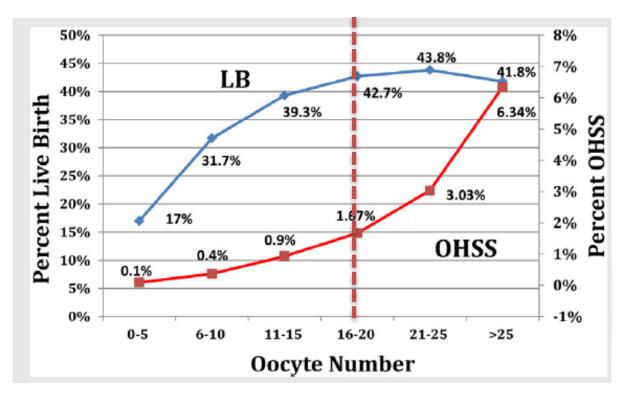
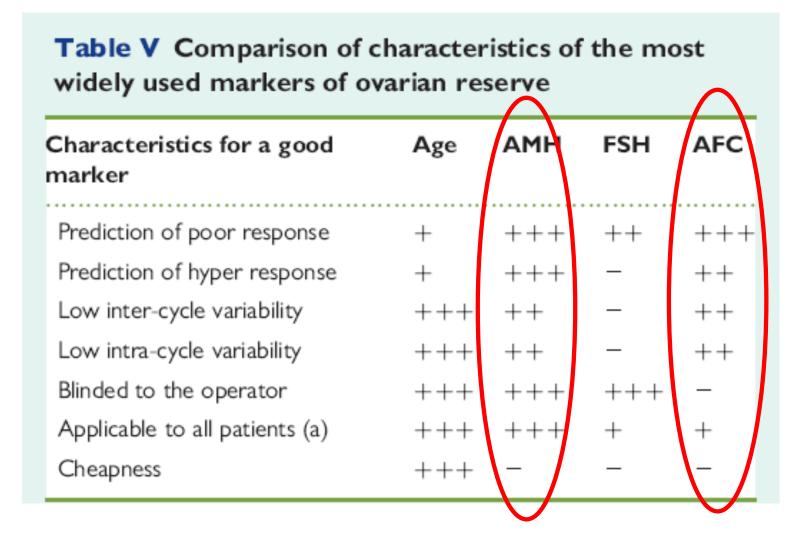



Figure 5 Nomogram to calculate predicted live birth probability given egg number and age.

Sunkara Human Reprod 2011

Risque OHSS en fonction d'ovocytes



Oocyte number as a ovarian hyperstimula and live birth: an ana in vitro fertilization c d'ovocytes > 15

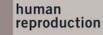
Ryan G. Steward, M.D.,^a Lan Lan, Ph.D.,^b Anish A. Shah, M.D., M.H.S.,^a Jason S. Yeh, M.D.,^a Thomas M. Price, M.D.,^a James M. Goldfarb, M.D.,^c and Suheil J. Muasher, M.D.^a Women's Health

exeus

Evaluation réserve ovarienne

La Marca A Human Reprod 2010

Classement selon nb ovocytes

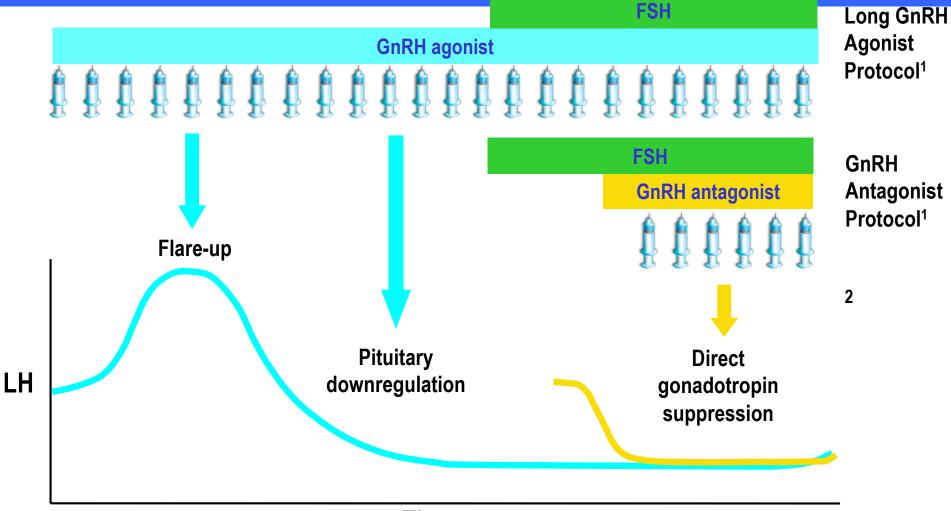

	Ovarian respons	Ovarian response groups						
	Group A I–3 oocytes n = 83	Group B 4–9 oocytes n = 471	Group C 10–15 oocytes n = 327	Group D >15 oocytes n = 218	P-value			
Live birth in the fresh cycle*	14 (16.9%)	140 (29.7%)	(33.4%)	70 (32.1%)	0.02 ^b			
Cumulative live birth*	18 (21.7%)	187 (39.7%)	165 (50.5%)	134 (61.5%)	< 0.00			

Drakopoulos Human Reprod 2016

Développement des protocoles antagonistes

Human Reproduction, Vol.24, No.4 pp. 764-774, 2009

Advanced Access publication on January 19, 2009 doi:10.1093/humrep/den468

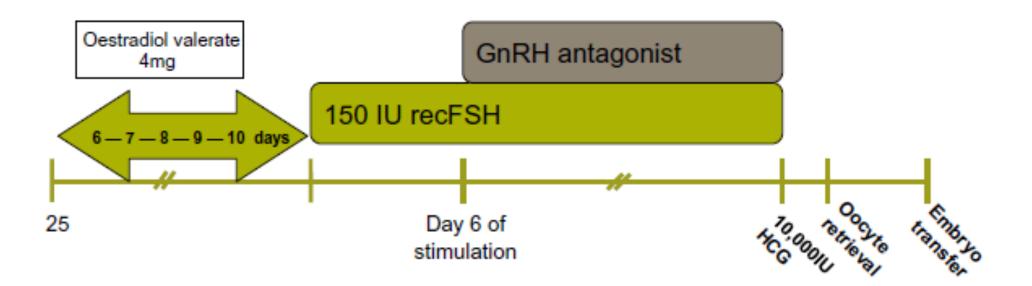


OPINION

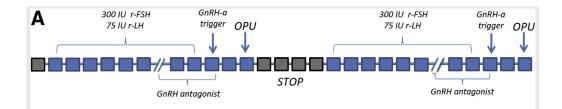
Improving the patient's experience of IVF/ICSI: a proposal for an ovarian stimulation protocol with GnRH antagonist co-treatment

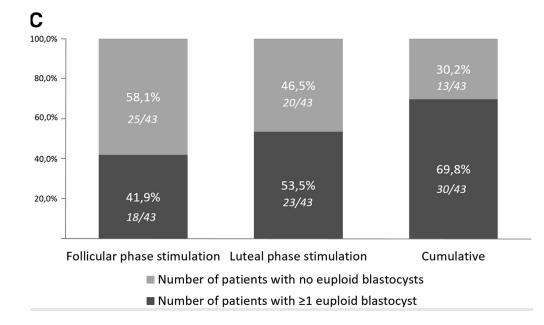
Paul Devroey^{1,10}, Mohamed Aboulghar², Juan Garcia-Velasco³, Georg Griesinger⁴, Peter Humaidan⁵, Efstratios Kolibianakis⁶, William Ledger⁷, Candido Tomás⁸, and Bart C.J.M. Fauser⁹

GnRH Antagonist Cycles Are Shorter Than Long GnRH Agonist Cycles


Time

1. Adapted with permission from de Greef R et al. Clin Pharmacol Ther. 2010;88:79-87.


2. Adapted from Hodgen. Contemp Rev Obstet Gynaecol. 1990;35:10–24.


Programmation avec les antagonistes

- E₂ pretreatment (Guivarc'h, 2010, Blockeel et al., 2012, Cedrin-Durnerin et al., 2012)
- OCP pretreatment (Wei et al., 2017)

Stimulation en phase folliculaire et phase lutéale = Duostim

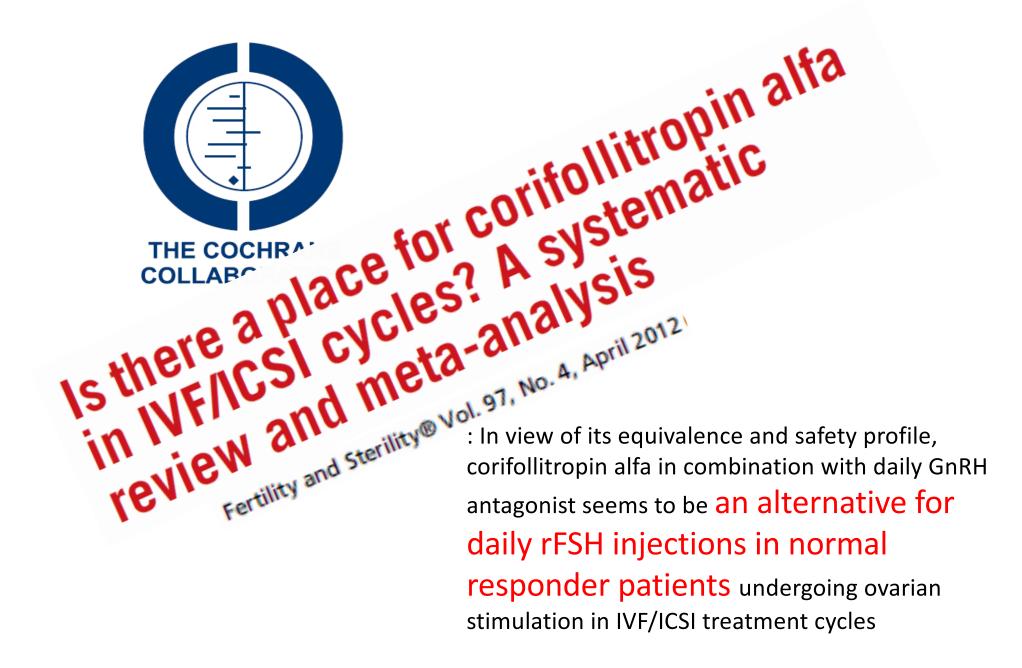
Preliminary clinical outcomes according to follicular or luteal phase stimulation.

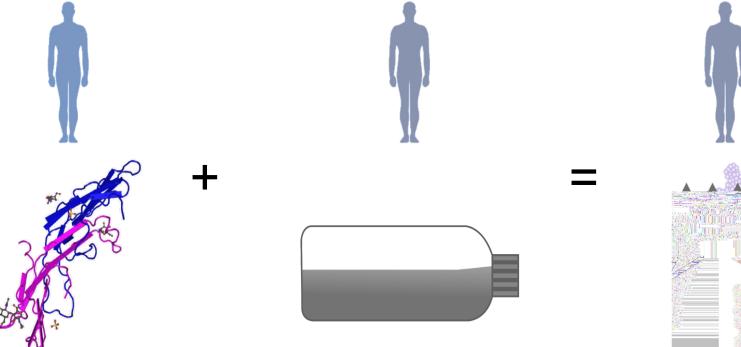
Stimulation phase						
Outcome	Follicular	Luteal	Total			
No. of SET No. of clinical pregnancies (%) No. of miscarriages (%)	7 6 (85.7) 1 (16.7)	8 6 (75.0) 1 (16.7)	15 12 (80.0) 2 (16.7)			
No. of ongoing pregnancies (%)	5 (71.4)	5 (62.5)	10 (66.7)			
Noto: SET single ombrue transfors						

Note: SET, single-embryo transfers. Ubaldi. DuoStim for reduced ovarian reserve. Fertil Steril 2016.

Ubalfi Fertil Steril 2016

Apparition de nouvelles molécules

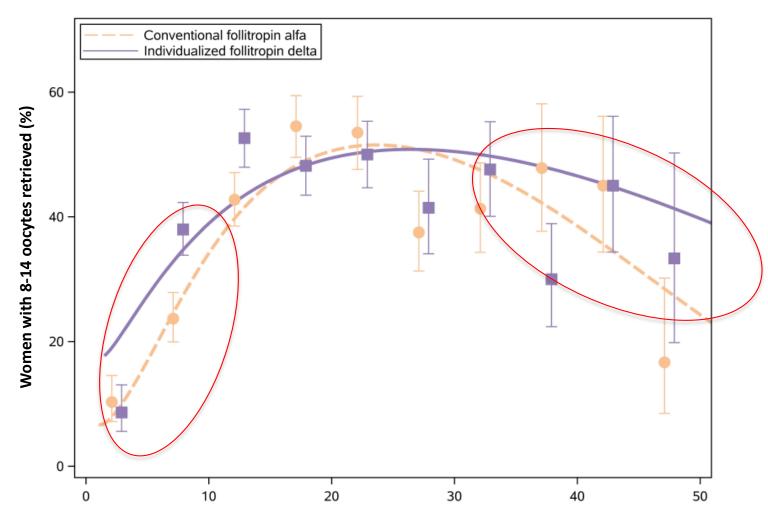



Dosage fonction du poids Longue durée d'action 7J

Dosage fonction du poids et de l'AMH Déterminée par calculateur et fixe Cible entre 8 et 14 ovocytes Long-acting FSH versus daily FSH for women undergoing assisted reproduction (Review)

Pouwer AW, Farquhar C, Kremer JAM

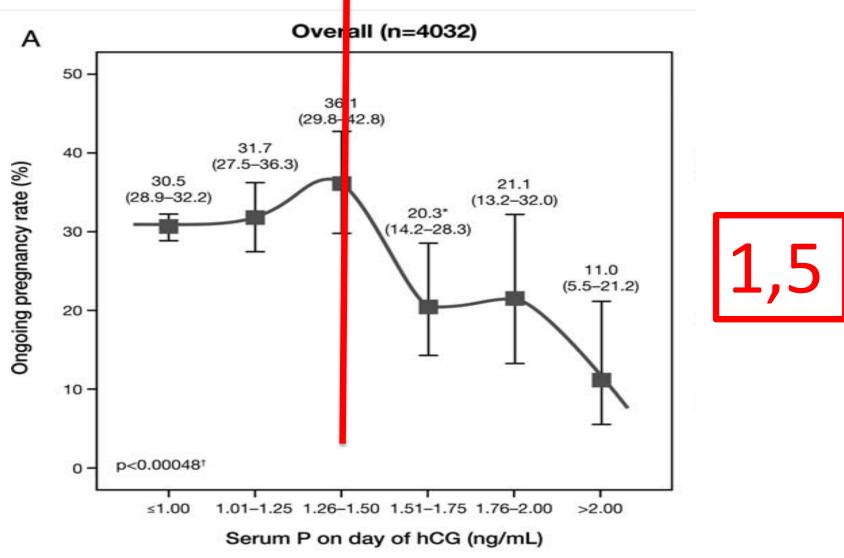
Follitropin delta est la première FSH recombinante humaine dérivée d'une lignée cellulaire humaine


Identical amino acid sequence as natural human FSH and existing CHO-derived rFSH products Expression in a cell line of human origin

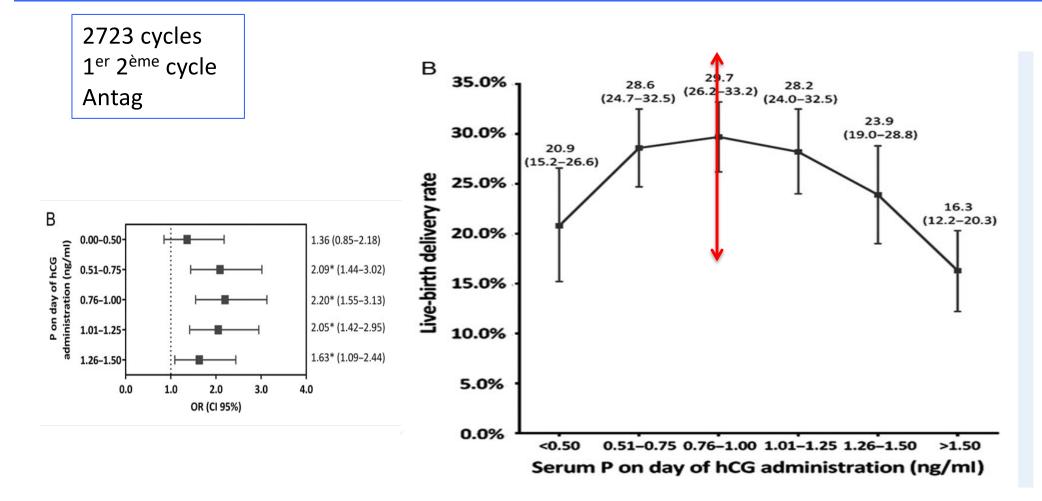
Glycosylation pattern that is more complex than rFSH derived from non-human, mammalian CHO cell line

European Commission marketing authorisation of REKOVELLE[®] (follitropin delta) – 12 December, 2016

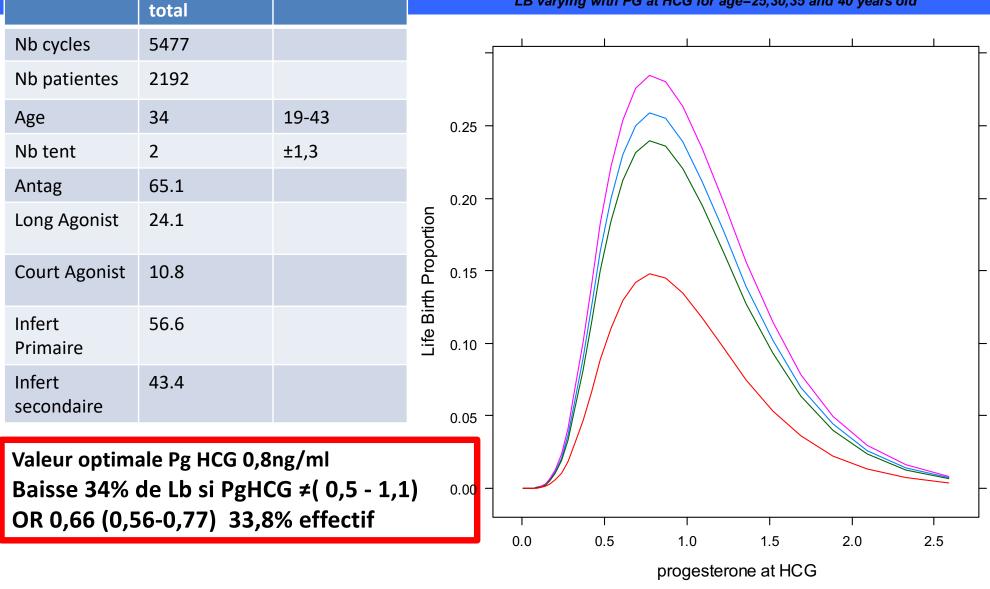
Resultats +Femmes qui ont atteint la cible de 8 à 14 ovocytes prélevés


Plus de femmes à atteindre la cible de 8à 14 ovocytes avec dosage individualisé de follitropin delta

AMH (pmol/L)

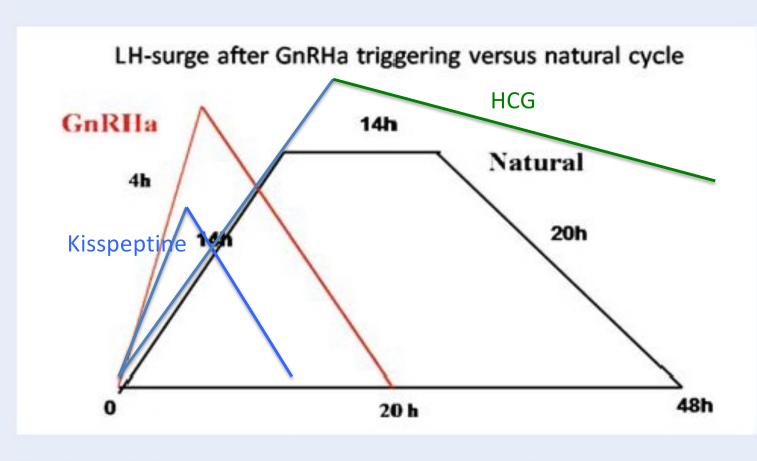

MONITORING DE LA PROGESTÉRONE PHASE FOLL

Progestérone fin de phase folliculaire


ы USCH E HR 2011

Un taux trop bas de progestérone semble également délétère

Blockeel and al Human Reprod 2014


Intervalle optimum de Pg en fin phase folliculaire

A. Guivarch et al ESHRE 2017 RBMO

DÉCLENCHEMENT PAR AGONISTE DU GNRH

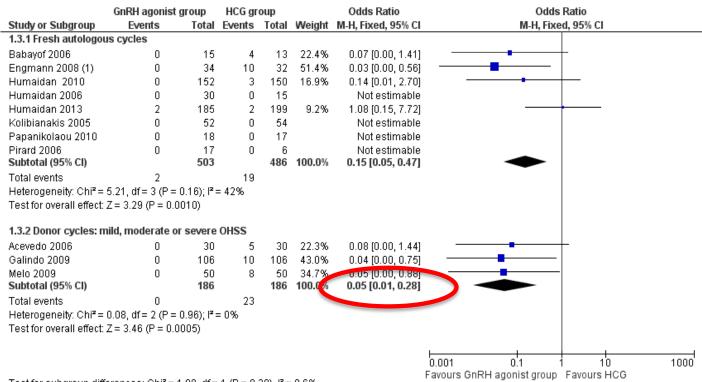

Pic de LH naturel et induit par agoniste

Figure I Differences in LH-surge after GnRH-agonist triggering when compared with a natural cycle.

Déclenchement de l'ovulation par agoniste et OHSS

Figure 5. GnRH agonist versus HCG for oocyte maturation triggering, outcome: 1.2 OHSS incidence per women randomly assigned.

Test for subgroup differences: Chi² = 1.09, df = 1 (P = 0.30), l² = 8.6%

Youssef M Cochrane Review 2014

Human Reproduction, Vol.26, No.10 pp. 2593-2597, 2011

Advanced Access publication on August 9, 2011 doi:10.1093/humrep/der251

human reproduction

OPINION

An OHSS-Free Clinic by segmentation of IVF treatment

Paul Devroey*, Nikolaos P. Polyzos, and Christophe Blockeel

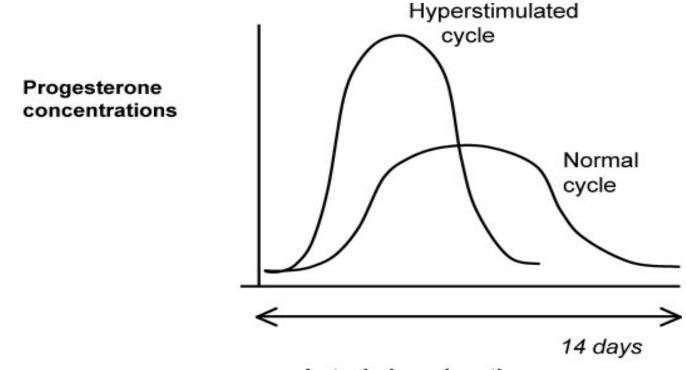
Centre for Reproductive Medicine, UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium

*Correspondence address. Tel: +32-477-380889; Fax: +32-2-477-6649; E-mail: paul.devroey@uzbrussel.be

The use of the GnRH antagonist protocol

Ovulation triggering Agonist

Cryopreservation of oocytes and embryos

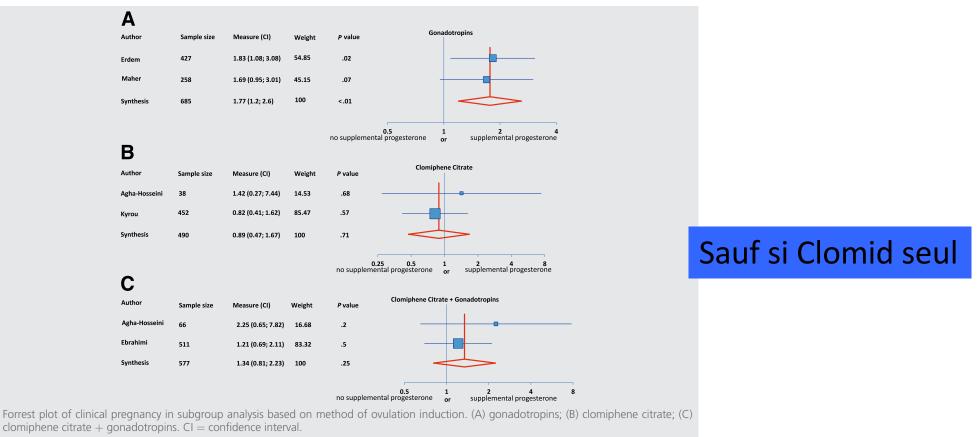

Conclusion évolution stimulation

Définition de la stimulation optimale

- Nb ovo cible
- Protocoles
 - Antagoniste
 - Stimulation aléatoire folliculaire et lutéale
 - Nouvelles molécules
- Sécurité
 - Déclench ago

REGAIN D' INTERÊT PHASE LUTEALE

Ce qui est sur pour les cycles frais !!



Luteal phase length

Insuffisance lutéale constante cycles hyperstimulés majorée si déclenchement agoniste

CYCLE DÉCLENCHÉ PAR HCG

Soutien phase lutéale hors fiv selon type de stimulation

Hill. Progesterone luteal support for IUIs. Fertil Steril 2013.

Hill Fertil Steril 2013

Until gestational

week 8-10

Until gestational

week 12 or later

Until pregnancy

is confirmed in

a blood or urine test (week 4) or

14 days after

Until the presence

of a fetal heartbeat

Total

Pénibilité de la progestérone vaginale et de sa durée !

	early P cess	sation	P continu	uation		Risk Ratio		F	Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl		М-Н,	Fixed, 95	% CI	
Andersen 2002	118	150	126	153	83.1%	0.96 [0.85, 1.07]					
Goudge 2010	25	35	24	31	16.9%	0.92 [0.70, 1.22]					
Total (95% CI)		185		184	100.0%	0.95 [0.86, 1.05]			◆		
Total events	143		150								
Heterogeneity: Chi ² =	0.05, df = 1 (P	= 0.82);	l² = 0%				0.5	0.7	1	1.5	
Test for overall effect:	Z = 0.97 (P = 0	0.33)				F	0.5 avours earl	•	ion Favo		~
i gure 4 Live birth ra	te of women	who un	derwent	early P	cessation	versus P continuati	ion after l	VF/ICSI.			

Liu et al RBEJ 2012

Y a t'il une place pour autre progestérone ?

RESEARCH ARTICLE

Subcutaneous Progesterone Is Effective and Safe for Luteal Phase Support in IVF: An Individual Patient Data Meta-Analysis of the Phase III Trials

Jakob Doblinger¹, Barbara Cometti², Silvia Trevisan², Georg Griesinger³*

 Department of Obstetrics and Gynecology, Paracelsus Medical University, Salzburg, Austria, 2 IBSA Institut Biochimique SA, R&D Scientific Affairs, Lugano, Switzerland, 3 Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital of Schleswig-Holstein, Campus Luebeck, Luebeck, Germany

Advanced Access publication on March 1, 2017 doi:10.1093/humrep/dex023

human reproduction

ORIGINAL ARTICLE Infertility

A Phase III randomized controlled trial comparing the efficacy, safety and tolerability of oral dydrogesterone versus micronized vaginal progesterone for luteal support in *in vitro* fertilization

Herman Tournaye¹, Gennady T. Sukhikh², Elke Kahler^{3,*}, and Georg Griesinger⁴

Oral dydrogesterone for luteal phase support in fresh in vitro fertilization cycles: a new standard?

Georg Griesinger, M.D.,^a Christophe Blockeel, M.D.,^b and Herman Tournaye, M.D.^b

^a Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital of Schleswig-Holstein, Luebeck, Germany, and ^b Center for Reproductive Medicine, Universitair Ziekenhuis Brussel, Brussels, Belgium

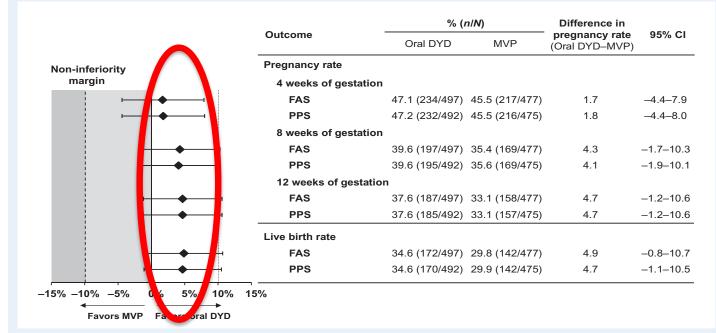


Figure 2 Pregnancy status post-treatment. Positive pregnancy rates at 4, 8 and 12 weeks of gestation, and the live birth rates are shown for both the FAS and PPS. A non-inferiority margin of 10% was used, whereby the test drug is non-inferior if the lower bound of the 95% CI excludes a difference greater than 10% in favor of the comparator.

CI, confidence interval; DYD, dydrogesterone; FAS, full analysis sample; MVP, micronized vaginal progesterone; PPS, per protocol sample.

CYCLE DECLENCHE PAR AGONISTE

Modèle Européen : population à risque

Table III Reproductive outcome for women in the two RCTs.

	> 14 follicles	
	Group A: GnRHa trigger + 1.500 hCG	Group B: hCG trigger
Patients, <i>n</i>	60	58
Rate of transfer, n (%)	52/60 (86.7)	57/58 (98.3)
Embryos transferred. mean (SD)	1.19 (0.40)	1.19 (0.40)
Positive hCG per embryo transfer, <i>n</i> (%)	25/52 (48.1)	21/57 (36.8)
Clinical pregnancy per patient, n (%)	21/60 (35.0)	17/58 (29.3)
Ongoing pregnancy per patient, <i>n</i> (%)	17/60 (28.3)	15/58 (25.9)
Implantation rate, <i>n</i> (%)	22/62 (35.5)	20/68 (29.4)
Early pregnancy loss, <i>n</i> (% of positive hCG)	4/25 (16.0)	4/21 (19.0)
OHSS rate, <i>n</i> (%)	0/60 (0)	2/58 (3.4)

RR, relative risk; CI, confidence interval; OHSS, ovarian hyperstimulation syndrome.

Declenchement par agoniste transfert frais modèle Européen

	population	Nb de cycles	Taux de réussite	OHSS
Radesic 2011	>14 foll >11mm S8 S9	71	52,1% G/T 1 blasto	1
Illiodromiti 2013	>14 foll >12mm JHCG AMH > E2 >	275	41,8%G/cycle 1 blasto	2
Sehyan 2013	Nb foll > 12 E2 élevé	23	17,4%G/T	6
Guivarc'h 2013	>20 foll> 11 JHCG E2>4000pg Atcd OHSS	68	39,6%G/T	1

TRANSFERT D'EMBRYON DIFFÉRÉ.

Quel est le meilleur traitement pour transfert d'embryon différé?

Table II Outcomes per embryo transfer.

	Overall	Type of frozen embry	o transfer cycle	OR (95% CI)	P-value	
		Modified natural Artificial				
Cinical pregnancy/ET	167/734 (22.8%)	94/394 (23.9%)	75/340 (22.1%)	0.8 (0.64–1.27)	0.6	
Ongoing pregnancy/ET	101/734 (13.8%)	57/394 (14.5%)	45/340 (13.2%)	0.8 (0.52-1.22)	0.3	
Live birth/ET	98/734 (13.4%)	57/394 (14.5%)	41/340 (12.1%)	0.8 (0.53-1.25)	0.3	

Groenenwoud HR 2016

	Natural cycle	hMG	Relative risk	P-value*
Reproductive outcome per embryo transferred				
Total N embryos transferred	n = 332	n = 340		
Implantation rate (IU + EU) ^b : % (95% CI)	2.4 (9.1–16.8)	16.2 (12.4–21.1)	I.3 (95% CI 0.9-2.0)	0.191
Implantation rate with FHB ^c : % (95% CI)	10.2 (7.3-14.3)	14.1 (10.6–18.7)	I.4 (95% CI 0.9-2.1)	0.153
Live birth rate: % (95% CI)	9.6 (6.8–13.6)	13.2 (10–17.7)	I.4 (95% CI 0.9-2.2)	0.171
Reproductive outcome per embryo transfer cycle	n = 213 cycles	n = 221		
Clinical pregnancy rate (IU + EU): % (95% Cl)	17.4 (12.6–24.0)	23.5 (17.9–30.9)	I.4 (95% CI 0.9-2.1)	0.159
Clinical pregnancy rate with FHB ^b : % (95% Cl)	14.6 (10.2 20.7)	20.8 (15.6 27.8)	1.4 (95% CI 0.9 2.3)	0.124
Live birth rate: % (95% CI)	14.1 (9.8–20.2)	19.9 (14.8–26.8)	I.4 (95% CI 0.9-2.3)	0.145
Reproductive outcome per embryo transferred on Day 3				
Total N embryos transferred after cryopreservation on Day 3	n = 287	n = 293		
Implantation rate (IU + EU) ^b : % (95% CI)	2.5 (9.0- 7.4)	16.7 (12.6–22.1)	I.3 (95% CI 0.9-2.1)	0.191
Implantation rate with FHB^c : % (95% CI)	10.1 (7.0-14.6)	15.0 (11.1–20.2)	I.5 (95% CI 0.9-2.4)	0.098
Live birth rate: % (95% CI)	9.8 (6.7–14.1)	14.0 (10.3-19.0)	1.4 (95% CI 0.9-2.3)	0.142

Peeraer HR 2015

Pas de différence

ESHRE 2019 FCS et TEC

- Etude française multicentrique
- Comparaison 14421 cycles
 - cycle naturel (NC)Cycle stimulé (SC) Cycle artificiel (AC) (56%)
- FCS/ naissance
 - NC 25,6%/ 18,8%
 - SC 23,6% /19,3%
 - AC 36,5%/16,9% p<0,003</p>
- Augmentation du taux de FCS en cycle artificiel

Faut 'il doser la progestérone avant transfert d'embryon dévitrifié en THS ?

Human Reproduction, Vol.32, No.12 pp. 2437–2442, 2017 Advanced Access publication on October 13, 2017 doi: | 0.1093/humrep/dex316

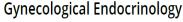
human **ORIGINAL ARTICLE Infertility** reproduction

> Low serum progesterone on the day of embryo transfer is associated with a diminished ongoing pregnancy rate in oocyte donation cycles after artificial endometrial preparation: a prospective study

E. Labarta^{1,*}, G. Mariani¹, N. Holtmann^{1,2}, P. Celada¹, J. Remohí¹, and E. Bosch¹

¹Department of Human Reproduction, Instituto Valenciano de Infertilidad, Plaza Policía Local, 3, Valencia 46015, Spain ²Current address: Department of Obstetrics and Gynecology, Heinrich Heine University Medical Center, Moorenstrasse 5, 40225 Düsseldorf, Germany

ca addrace. Tal: ±34.963050900; Fav: ±34.963050999; F.maik alana laharta@ivi i


ARTICLE

Serum progesterone concentration and live birth rate in frozen-thawed embryo transfers with hormonally prepared endometrium

Isabelle Cédrin-Durnerin^{1,*}, Tiphaine Isnard¹, Sarah Mahdjoub², Charlotte Sonigo¹, Alice Seroka¹, Marjorie Comtet¹, Charlène Herbemont³, Christophe Sifer³, Michael Grynberg¹

CrossMark

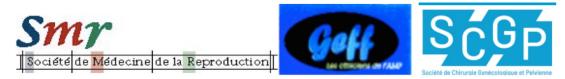
ISSN: 0951-3590 (Print) 1473-0766 (Online) Journal homepage: http://www.tandfonline.com/loi/igye20

(Taylor & Francis

Low serum progesterone the day prior to frozen embryo transfer of euploid embryos is associated with significant reduction in live birth rates

Gaggiotti-Marre, F. Martinez, L. Coll, S. Garcia, M. Álvarez, M. Parriego, P. Barri, N. Polyzos & B. Coroleu

Si Prog < 10 ng **Réduction significative** des taux de grossesse


Conclusion phase lutéale

Cycle frais

- Evolution vers autre voie administration progestérone ?
- Place pour traitement renforcé par faible dose HCG après déclenchement par agoniste ?

Cycle différé

- Recherche du meilleur protocole tjs en cours
- Optimisation du cycle artificiel par dosage de la progestérone avant transfert embryon

Save the date Paris 2019, 5th december Everything you always wanted to know about the Uterus !

« L'utérus dans tous ces états » Honorary president: Antonio Pellicer

Infertility & uterus Implantation: a challenge - Nick Macklon What have we learnt from surgery to manage the infertile uterus? - Attilio DiSpiezio

Implantation : the medical point of view

The place of microbioma - Carlos Simon The place of immunology - Diana Alecsandru The place of all endometrial tests – Mickael Grynberg

Implantation: the surgical point of view Chair: André Guérin & Eric Sedbon & Mark Emmanuel Surgical treatment of synechia - Hans Emanuel Endometrial stem cells - Xavier Santamaria

Uterus abnormalities and thin endometrium - G. Grimbizis Isthmocele : which treatment for which patient ? - Hervé Fernandez

Myomas & infertilityChair: Alberto Vasquez & Nathalie Chabert Buffet & Gil DubernardManagement of type 0-2 myomas - Stephano BettochiLaparoscopic myomectomy for infertile patients- Pauline ChauvetHIFU: a new entity for the treatment of myoma and adenomyosis - Ph DescampsPlace of the SPRMs in the context of infertility - Catherine Rongières

Myometrium & endometrium Chair: Anne Guivarc'h & Nicolas Chevalier & Pierre-E Bouet Uterine adenomyosis - Pietro Santulli

Endometrial Growth – Noémie Ranisavljevic What about medical endometrial scratching ? Frédéric Lamazou What about surgical endometrial scratching ? – Olivier Garbin

Take home message: what have we learnt today ? Antonio Pellicer